脚本专栏 
首页 > 脚本专栏 > 浏览文章

TensorFlow Autodiff自动微分详解

(编辑:jimmy 日期: 2025/2/27 浏览:3 次 )

如下所示:

with tf.GradientTape(persistent=True) as tape:
 z1 = f(w1, w2 + 2.)
 z2 = f(w1, w2 + 5.)
 z3 = f(w1, w2 + 7.)
 z = [z1,z3,z3]
[tape.gradient(z, [w1, w2]) for z in (z1, z2, z3)]

输出结果

[[<tf.Tensor: id=56906, shape=(), dtype=float32, numpy=40.0>,
 <tf.Tensor: id=56898, shape=(), dtype=float32, numpy=10.0>],
 [<tf.Tensor: id=56919, shape=(), dtype=float32, numpy=46.0>,
 <tf.Tensor: id=56911, shape=(), dtype=float32, numpy=10.0>],
 [<tf.Tensor: id=56932, shape=(), dtype=float32, numpy=50.0>,
 <tf.Tensor: id=56924, shape=(), dtype=float32, numpy=10.0>]]
with tf.GradientTape(persistent=True) as tape:
 z1 = f(w1, w2 + 2.)
 z2 = f(w1, w2 + 5.)
 z3 = f(w1, w2 + 7.)
 z = [z1,z2,z3]
tape.gradient(z, [w1, w2])

输出结果

[<tf.Tensor: id=57075, shape=(), dtype=float32, numpy=136.0>,

<tf.Tensor: id=57076, shape=(), dtype=float32, numpy=30.0>]

总结:如果对一个listz=[z1,z2,z3]求微分,其结果将自动求和,而不是返回z1、z2和z3各自对[w1,w2]的微分。

补充知识:Python/Numpy 矩阵运算符号@

如下所示:

A = np.matrix('3 1; 8 2')

B = np.matrix('6 1; 7 9')

A@B
matrix([[25, 12],
  [62, 26]])

以上这篇TensorFlow Autodiff自动微分详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:python3.4中清屏的处理方法
下一篇:Python3基于print打印带颜色字符串
一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。