数据库 
首页 > 数据库 > 浏览文章

Redis利用Pipeline加速查询速度的方法

(编辑:jimmy 日期: 2025/1/18 浏览:3 次 )

1. RTT

Redis 是一种基于客户端-服务端模型以及请求/响应协议的TCP服务。这意味着通常情况下 Redis 客户端执行一条命令分为如下四个过程:

  • 发送命令
  • 命令排队
  • 命令执行
  • 返回结果

客户端向服务端发送一个查询请求,并监听Socket返回,通常是以阻塞模式,等待服务端响应。服务端处理命令,并将结果返回给客户端。客户端和服务端通过网络进行连接。这个连接可以很快,也可能很慢。无论网络如何延迟,数据包总是能从客户端到达服务端,服务端返回数据给客户端。

这个时间被称为 RTT (Round Trip Time),例如上面过程的发送命令和返回结果两个过程。当客户端需要连续执行多次请求时很容易看到这是如何影响性能的(例如,添加多个元素到同一个列表中)。例如,如果 RTT 时间是250毫秒(网络连接很慢的情况下),即使服务端每秒能处理100k的请求量,那我们每秒最多也只能处理4个请求。如果使用的是本地环回接口,RTT 就短得多,但如如果需要连续执行多次写入,这也是一笔很大的开销。

下面我们看一下执行 N 次命令的模型:

Redis利用Pipeline加速查询速度的方法

2. Pipeline

我们可以使用 Pipeline 改善这种情况。Pipeline 并不是一种新的技术或机制,很多技术上都使用过。RTT 在不同网络环境下会不同,例如同机房和同机房会比较快,跨机房跨地区会比较慢。Redis 很早就支持 Pipeline 技术,因此无论你运行的是什么版本,你都可以使用 Pipeline 操作 Redis。

Pipeline 能将一组 Redis 命令进行组装,通过一次 RTT 传输给 Redis,再将这组 Redis 命令按照顺序执行并将结果返回给客户端。上图没有使用 Pipeline 执行了 N 条命令,整个过程需要 N 次 RTT。下图为使用 Pipeline 执行 N 条命令,整个过程仅需要 1 次 RTT:

Redis利用Pipeline加速查询速度的方法

Redis 提供了批量操作命令(例如 mget,mset等),有效的节约了RTT。但大部分命令是不支持批量操作的。

3. Java Pipeline

Jedis 也提供了对 Pipeline 特性的支持。我们可以借助 Pipeline 来模拟批量删除,虽然不会像 mget 和 mset 那样是一个原子命令,但是在绝大数情况下可以使用:

public void mdel(List<String> keys){
 Jedis jedis = new Jedis("127.0.0.1");
 // 创建Pipeline对象
 Pipeline pipeline = jedis.pipelined();
 for (String key : keys){
  // 组装命令
  pipeline.del(key);
 }
 // 执行命令
 pipeline.sync();
}

4. 性能测试

下表给出了不同网络环境下非 Pipeline 和 Pipeline 执行 10000 次 set 操作的效果:

网络 延迟 非Pipeline Pipeline 本机 0.17ms 573ms 134ms 内网服务器 0.41ms 1610ms 240ms 异地机房 7ms 78499ms 1104ms

因测试环境不同可能会得到不同的测试数据,本测试 Pipeline 每次携带 100 条命令。

我们可以从上表中得出如下结论:

  • Pipeline 执行速度一般比逐条执行要快。
  • 客户端和服务端的网络延时越大,Pipeline 的效果越明显。

5. 批量命令与Pipeline对比

下面我们看一下批量命令与 Pipeline 的区别:

  • 原生批量命令是原子的,Pipeline 是非原子的。
  • 原生批量命令是一个命令对应多个 key,Pipeline 支持多个命令。
  • 原生批量命令是 Redis 服务端支持实现的,而 Pipeline 需要服务端和客户端的共同实现。

6. 注意点

使用 Pipeline 发送命令时,每次 Pipeline 组装的命令个数不能没有节制,否则一次组装的命令数据量过大,一方面会增加客户端的等待时间,另一方面会造成一定的网络阻塞,可以将一次包含大量命令的 Pipeline 拆分成多个较小的 Pipeline 来完成。

好了,以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对的支持。

上一篇:redis中key的设置方法步骤
下一篇:Redis和Lua实现分布式限流器的方法详解
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。