Node.js Buffer用法解读
Buffer是什么?
Buffer作为存在于全局对象上,无需引入模块即可使用,你绝对不可以忽略它。
可以理解Buffer是在内存中开辟的一片区域,用于存放二进制数据。Buffer所开辟的是堆外内存。
Buffer的应用场景有哪些?
流
怎么理解流呢?流是数据的集合(与数据、字符串类似),但是流的数据不能一次性获取到,数据也不会全部load到内存中,因此流非常适合大数据处理以及断断续续返回chunk的外部源。流的生产者与消费者之间的速度通常是不一致的,因此需要buffer来暂存一些数据。buffer大小通过highWaterMark参数指定,默认情况下是16Kb。
存储需要占用大量内存的数据
Buffer 对象占用的内存空间是不计算在 Node.js 进程内存空间限制上的,所以可以用来存储大对象,但是对象的大小还是有限制的。一般情况下32位系统大约是1G,64位系统大约是2G。
如何创建Buffer
除了流自动隐式创建Buffer之外,也可以手动创建Buffer,方式如下:
Buffer中存储的数据已确定
Buffer.from(obj) // obj支持的类型string, buffer, arrayBuffer, array, or array-like object
注意:Buffer.from不支持传入数字,如下所示:
Buffer.from(1234); buffer.js:208 throw new errors.TypeError( ^ TypeError [ERR_INVALID_ARG_TYPE]: The "value" argument must not be of type number. Received type number at Function.from (buffer.js:208:11) ...
若要传入数字可以采用传入数组的方式:
const buf = Buffer.from([1, 2, 3, 4]); console.log(buf); // <Buffer 01 02 03 04>
但是这种方式存在一个问题,当存入不同的数值的时候buffer中记录的二进制数据会相同,如下所示:
const buf2 = Buffer.from([127, -1]); console.log(buf2); // <Buffer 7f ff> const buf3 = Buffer.from([127, 255]); console.log(buf3); // <Buffer 7f ff> console.log(buf3.equals(buf2)); // true
当要记录的一组数全部落在0到255(readUInt8来读取)这个范围, 或者全部落在-128到127(readInt8来读取)这个范围那么就没有问题,否则的话就强烈不推荐使用Buffer.from来保存一组数。因为不同的数字读取时应该调用不同的方法。
Buffer存储数据未确定
Buffer.alloc、Buffer.allocUnsafe、Buffer.allocUnsafeSlow
Buffer.alloc会用0值填充已分配的内存,所以相比后两者速度上要慢,但是也较为安全。当然也可以通过--zero-fill-buffers flag使allocUnsafe、allocUnsafeSlow在分配完内存后也进行0值填充。
node --zero-fill-buffers index.js
当分配的空间小于4KB的时候,allocUnsafe会直接从之前预分配的Buffer里面slice空间,因此速度比allocUnsafeSlow要快,当大于等于4KB的时候二者速度相差无异。
// 分配空间等于4KB function createBuffer(fn, size) { console.time('buf-' + fn); for (var i = 0; i < 100000; i++) { Buffer[fn](size); } console.timeEnd('buf-' + fn); } createBuffer('alloc', 4096); createBuffer('allocUnsafe', 4096); createBuffer('allocUnsafeSlow', 4096); // 输出 buf-alloc: 294.002ms buf-allocUnsafe: 224.072ms buf-allocUnsafeSlow: 209.22ms
function createBuffer(fn, size) { console.time('buf-' + fn); for (var i = 0; i < 100000; i++) { Buffer[fn](size); } console.timeEnd('buf-' + fn); } createBuffer('alloc', 4095); createBuffer('allocUnsafe', 4095); createBuffer('allocUnsafeSlow', 4095); // 输出 buf-alloc: 296.965ms buf-allocUnsafe: 135.877ms buf-allocUnsafeSlow: 205.225ms
需要谨记一点:new Buffer(xxxx) 方式已经不推荐使用了
Buffer使用
buffer转字符串
const buf = Buffer.from('test'); console.log(buf.toString('utf8')); // test console.log(buf.toString('utf8', 0, 2)); // te
buffer转json
const buf = Buffer.from([0x1, 0x2, 0x3, 0x4, 0x5]); console.log(buf.toJSON()); // { type: 'Buffer', data: [ 1, 2, 3, 4, 5 ] }
buffer裁剪,裁剪后返回的新的buffer与原buffer指向同一块内存
buf.slice([start[, end]])
- start 起始位置
- end 结束位置(不包含)
示例:
var buf1 = Buffer.from('test'); var buf2 = buf1.slice(1, 3).fill('xx'); console.log("buf2 content: " + buf2.toString()); // xx console.log("buf1 content: " + buf1.toString()); // txxt
buffer拷贝,buffer与数组不同,buffer的长度一旦确定就不再变化,因此当拷贝的源buffer比目标buffer大时只会复制部分的值
buf.copy(target[, targetStart[, sourceStart[, sourceEnd]]])
示例:
var buf1 = Buffer.from('abcdefghijkl'); var buf2 = Buffer.from('ABCDEF'); buf1.copy(buf2, 1); console.log(buf2.toString()); //Abcdef
buffer相等判断,比较的是二进制值
buf.equals(otherBuffer)
示例:
const buf1 = Buffer.from('ABC'); const buf2 = Buffer.from('414243', 'hex'); console.log(buf1.equals(buf2)); // true
除了equals之外,compare其实也可以用于判断是否相等(当结果为0则相等),不过compare更主要的作用是用于对数组内的buffer实例排序。
buffer是否包含特定值
buf.includes(value[, byteOffset][, encoding]) buf.indexOf(value[, byteOffset][, encoding])
示例:
const buf = Buffer.from('this is a buffer'); console.log(buf.includes('this')); // true console.log(buf.indexOf('this')); // 0
写入读取数值
写入方法:
位数固定且超过1个字节的: write{Double| Float | Int16 | Int32| UInt16 | UInt32 }{BE|LE}(value, offset)
位数不固定的: write{Int | UInt}{BE | LE}(value, offset, bytelength) //此方法提供了更灵活的位数表示数据(比如3位、5位)
位数固定是1个字节的: write{Int8 | Unit8}(value, offset)
读取方法:
位数固定且超过1个字节的: read{Double| Float | Int16 | Int32 | UInt16 | UInt32 }{BE|LE}(offset)
位数不固定的: read{Int | UInt}{BE | LE}(offset, byteLength)
位数固定是1个字节的: read{Int8 | Unit8}(offset)
Double、Float、Int16、Int32、UInt16、UInt32既确定了表征数字的位数,也确定了是否包含负数,因此定义了不同的数据范围。同时由于表征数字的位数都超过8位,无法用一个字节来表示,因此就涉及到了计算机的字节序区分(大端字节序与小端字节序)
关于大端小端的区别可以这么理解:数值的高位在buffer的起始位置的是大端,数值的低位buffer的起始位置则是小端
const buf = Buffer.allocUnsafe(2); buf.writeInt16BE(256, 0) console.log(buf); // <Buffer 01 00> buf.writeInt16LE(256, 0) console.log(buf); // <Buffer 00 01>
http://tools.jb51.net/transcoding/hexconvert这里可以查看数值的不同进制之间的转换,如果是大端的话,则直接按顺序(0100)拼接16进制即可,如果是小端则需要调换一下顺序才是正确的表示方式。
buffer合并
Buffer.concat(list[, totalLength]) //totalLength不是必须的,如果不提供的话会为了计算totalLength会多一次遍历
const buf1 = Buffer.from('this is'); const buf2 = Buffer.from(' funny'); console.log(Buffer.concat([buf1, buf2], buf1.length + buf2.length)); // <Buffer 74 68 69 73 20 69 73 20 66 75 6e 6e 79>
清空buffer
清空buffer数据最快的办法是buffer.fill(0)
buffer模块与Buffer的关系
Buffer是全局global上的一个引用,指向的其实是buffer.Buffer
const buffer = require('buffer'); console.log(buffer.Buffer === Buffer); //true
buffer模块上还有其他一些属性和方法
const buffer = require('buffer'); console.log(buffer); { Buffer: { [Function: Buffer] poolSize: 8192, from: [Function: from], alloc: [Function: alloc], allocUnsafe: [Function: allocUnsafe], allocUnsafeSlow: [Function: allocUnsafeSlow], isBuffer: [Function: isBuffer], compare: [Function: compare], isEncoding: [Function: isEncoding], concat: [Function: concat], byteLength: [Function: byteLength], [Symbol(node.isEncoding)]: [Function: isEncoding] }, SlowBuffer: [Function: SlowBuffer], transcode: [Function: transcode], INSPECT_MAX_BYTES: 50, kMaxLength: 2147483647, kStringMaxLength: 1073741799, constants: { MAX_LENGTH: 2147483647, MAX_STRING_LENGTH: 1073741799 } }
上面的kMaxLength与MAX_LENGTH代表了新建buffer时内存大小的最大值,当超过限制值后就会报错
32为机器上是(2^30)-1(~1GB)
64位机器上是(2^31)-1(~2GB)
Buffer释放
我们无法手动对buffer实例进行GC,只能依靠V8来进行,我们唯一能做的就是解除对buffer实例的引用
参考资料
http://cenalulu.github.io/linux/character-encoding/
https://www.jb51.net/article/31045.htm
http://edu.jb51.net/nodejs/nodejs-buffer.html
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
下一篇:从零开始搭建webpack+react开发环境的详细步骤